ADS5525/27/45/46/47 EVM User
Guide
User's Guide
November 2006
SLWU028B
Contents
1
2
Overview.................................................................................................................... 5
1.1
EVM Basic Functions............................................................................................ 5
EVM Quick Start Guide ................................................................................................ 6
2.1
2.2
EVM LVDS Output Mode Quick Start (Default) .............................................................. 6
EVM CMOS Output Mode Quick Start ........................................................................ 6
3
4
Circuit Description ...................................................................................................... 7
3.1
Schematic Diagram .............................................................................................. 7
Circuit Function................................................................................................... 7
3.2
Expansion Options .................................................................................................... 13
4.1
4.2
4.3
Custom FPGA Code ........................................................................................... 13
Expansion Slot .................................................................................................. 13
Optional USB SPI Interface ................................................................................... 13
5
Physical Description.................................................................................................. 14
5.1
5.2
5.3
PCB Layout...................................................................................................... 14
Bill of Materials.................................................................................................. 20
PCB Schematics................................................................................................ 25
SLWU028B–January 2006–Revised November 2006
Table of Contents
3
Submit Documentation Feedback
List of Figures
1
2
3
4
5
6
7
8
9
ADS5547 SNR Performance vs Decoupling ............................................................................. 8
THS4509 + ADS5545 EVM Performance ................................................................................ 9
Eye Diagram of Data on Header J4...................................................................................... 11
Top Layer.................................................................................................................... 14
Layer 2, Ground Plane .................................................................................................... 15
Layer 3, Power Plane #1 .................................................................................................. 16
Layer 4, Power Plane #2 .................................................................................................. 17
Layer 5, Ground Plane .................................................................................................... 18
Layer 6, Bottom Layer ..................................................................................................... 19
List of Tables
1
2
3
4
5
DIP Switch SW1 ............................................................................................................. 7
EVM Power Options......................................................................................................... 8
Output Connector J4....................................................................................................... 10
Test Points .................................................................................................................. 12
Bill of Materials ............................................................................................................. 21
4
List of Figures
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
User's Guide
SLWU028B–January 2006–Revised November 2006
1
Overview
This manual assists users in using the ADS5525/27/45/46/47 evaluation module (EVM) for evaluating the
performance of the ADS5525/27/45/46/47 (ADCs). The EVM provides a powerful and robust capability in
evaluation of the many features of the ADCs and the performance of the device der many conditions.
1.1 EVM Basic Functions
Analog input to the ADC is provided via external SMA connectors. The user supplies a single-ended input,
which is converted into a differential signal. One input path uses a differential amplifier, while the other
input is transformer-coupled.
The EVM provides an external SMA connector for input of the ADC clock. The single-ended input is
converted into a differential signal at the input of the device.
Digital output from the EVM is via a 40-pin connector.
Power connections to the EVM are via banana jack sockets. Separate sockets are provided for the ADC
analog and digital supplies, the FPGA supply, and the differential amplifier supply.
CAUTION
Exceeding the maximum input voltages can damage EVM components.
Undervoltage may cause improper operation of some or all of the EVM
components.
Xilinx, Spartan, WebPACK are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.
SLWU028B–January 2006–Revised November 2006
5
Submit Documentation Feedback
EVM Quick Start Guide
2
EVM Quick Start Guide
The ADC has two basic modes of output operation, ensuring compatibility in a broad range of systems.
Follow the steps below to get the EVM operating quickly with the ADC in either DDR LVDS output mode
or CMOS output mode.
Note: Follow the steps in the listed order; not doing so could result in improper operation.
2.1 EVM LVDS Output Mode Quick Start (Default)
1. Ensure a jumper is installed between pins 1 and 2 on JP2.
2. Ensure DIP switch SW1, switch 2 is set to LVDS.
3. Ensure DIP switch SW1, switch 8 is set to PARALLEL.
4. Use a regulated power supply to provide 3.3 VDC to the ADC at J11 and J15, with the corresponding
returns connected to J9 and J16.
5. Use a regulated power supply to provide a 5-VDC input to J14, while connecting the return to J17.
6. Provide a filtered, low-phase-noise, sinusoidal 1.5-Vrms, 170-MHz clock to J7.
7. Provide a filtered, sinusoidal analog input to J3.
2.2 EVM CMOS Output Mode Quick Start
1. Ensure a jumper is installed between pins 2 and 3 on JP2.
2. Ensure DIP switch SW1, switch 2 is set to CMOS.
3. Ensure DIP switch SW1, switch 8 is set to PARALLEL.
4. Use a regulated power supply to provide 3.3 VDC to the ADC at J11 and J15, with the corresponding
returns connected to J9 and J16.
5. Use a regulated power supply to provide a 5-VDC input to J14, while connecting the return to J17.
6. Provide a low-phase-noise, sinusoidal 1.5-Vrms, 170-MHz clock to J7.
7. Provide a filtered sinusoidal analog input to J3.
8. Briefly depress S1, which resets the EVM.
6
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Circuit Description
3
Circuit Description
3.1 Schematic Diagram
3.2 Circuit Function
The following paragraphs describe the function of individual circuits. See the data sheet for complete
device operating characteristics.
3.2.1
Configuration Options
The EVM provides a DIP switch, SW1, to control many of the modes of operation when the EVM is
Note: When the device is configured for serial-mode operation (SW1, switch 8), the DIP settings
on SW1, switch 1 through SW1, switch 7 are ignored.
Table 1. DIP Switch SW1
SW1 SWITCH
NUMBER
OFF
ON
DESCRIPTION
1
2
3
4
2s complement
LVDS
Offset binary
CMOS
Determines device output format
Determines device output mode
Reserved
Reserved
Reserved
Internal reference
External reference When set to External Reference, ADC uses common-mode
voltage on TP1.
5
6
7
8
Edge = 1
Edge = 3
Normal
Serial
Edge = 2
Edge = 4
Power down
Parallel
Allows for output edge programmability
Allows for output edge programmability
Allows for power down
Determines mode for register interface
By switching SW1, switch 8 to OFF, the ADC operates in serial mode, using its programmed register
contents. A complete register map can be found in the device datasheet. Three pins on header J6 have
been reserved for programming the device while it operates in serial mode. To program the device
registers using header J6, place SCLK on pin 21, SDATA on pin 23, and SEN on pin 25. A pattern
generator can be used to generate the patterns needed for programming. Alternatively, TI provides an
optional USB daughtercard that plugs into the expansion slot of the EVM. The USB daughtercard allows
ADC register control via a software package loaded onto the PC.
3.2.2
Power
Power is supplied to the EVM via banana jack sockets. The EVM offers the capability to supply analog
and digital 3.3 V independently to the ADC. Table 2 offers a snapshot of the power-supply options. All
supply connections are required for default operation, except J12, J10, J13, and J20.
The EVM provides local decoupling for the ADC; however, the ADC features internal decoupling, and in
many cases minimal external decoupling can be used without loss in performance. Users are encouraged
to experiment to find the optimal amount of external decoupling required for their application. Figure 1
shows the ADS5547 LVDS-mode performance with all of the decoupling capacitors installed and the
performance with C4, C5, C6, C7, C8, C9, and C10 removed. By default, the EVM comes with all of the
decoupling capacitors installed.
SLWU028B–January 2006–Revised November 2006
7
Submit Documentation Feedback
Circuit Description
Table 2. EVM Power Options
BANANA JACK
NAME
Device AGND
AGND
VOLTAGE
GND
DESCRIPTION
J9
J10
J11
J12
GND
Device AVDD
3.3
–5
Device analog supply
THS4509 Vs– supply
Amplifier negative
rail
J13
J14
Amplifier positive rail
Auxiliary power
5
5
THS4509 Vs+ supply
Supplies power to all peripheral circuitry including the FPGA
and PROM. Voltages rails are created by using TI's TPS75003
voltage regulator.
J15
J16
J17
J20
Device DVDD
DGND
3.3
Device internal digital output supply
GND
GND
DGND
If TP11, TP12, and TP13 are tied low, the TPS75003 is
disabled. In this case, one can supply 3.3 V to pin 1, 1.2 V to
pin 2, and 2.2 V to pin 3 of J20 while connecting the ground to
J17.
74
73
72
71
70
69
68
1 Decoupling Cap
Baseline-All Decoupling Caps
9.97
19.94
30.13
40.33
50.13
60.13
69.59
79.87
89.75 100.33 130.13 170.13
f
IN
− Input Frequency − MHz
G001
Figure 1. ADS5547 SNR Performance vs Decoupling
3.2.3
Analog Inputs
The EVM can be configured to provide the ADC with either transformer-coupled or differential amplifier
inputs from a single-ended source. The inputs are provided via SMA connector J3 for transformer-coupled
input or SMA connector J1 for differential amplifier input. To set up for one of these options, the EVM must
be configured as follows:
1. For a 1:1 transformer-coupled input to the ADC, a single-ended source is connected to J3. Confirm
that SJP4 has pins 2 and 3 shorted, and that SJP5 has pins 2 and 3 shorted. The transformer used,
the Mini-Circuits TC4-1W, forms an inherent band-pass filter with a pass band from 3 MHz to 800 MHz.
This is the default configuration for the EVM.
2. One can use a TI THS4509 amplifier to drive the ADC by applying an input to J1. Reconfigure SJP4
and SJP5 such that both have pins 1 and 2 shorted. A 5-VDC supply must be connected to the board
to provide power to U3 for this configuration.
The THS4509 amplifier path converts a single-ended signal presented on J1 into a differential signal.
8
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Circuit Description
The schematics present various interface options between the amplifier and the ADC. Depending on
the input frequencies of interest, further performance optimization can be had by designing a
corresponding filter. In its default configuration, R43, R44, and C119 form a first-order, low-pass filter
THS4509 path.
10
1
0
−10
−20
−30
−40
−50
−60
−70
5
−80
−90
3
x
4
−100
−110
−120
2
−130
−135
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
f − Frequency − MHz
G002
Figure 2. THS4509 + ADS5545 EVM Performance
3.2.4
3.2.5
Clock Input
A single-ended, harmonically filtered, low-phase-noise, 1.5-Vrms sinusoidal input should be applied to J7.
The frequency must not exceed the device specification. In the EVM default configuration, both SPJ1 and
SJP2 must have pins 1 and 2 shorted.
In the board default configuration, the transformer provides single-ended to differential conversion. The
transformer has an impedance ratio of 4.
Digital Outputs
For compatibility with a broad range of logic analyzers, the EVM outputs 3.3-V parallel CMOS data on
header J4, independent of the ADC operational mode. The Xilinx™Spartan™-3E FPGA provides the
necessary translation, and it configures itself using one of two different logic files stored in the PROM,
based on the EVM configuration. The CMOS data output of the FPGA is contained in data header J4 and
is a standard 40-pin header on a 100-mil grid, which allows easy connection to a logic analyzer. The
connector pinout is listed in Table 3. For quick setup, the eye diagram is shown in Figure 3. No setup or
hold-time adjustments must be made to the logic analyzer if using the rising edge of the output clock to
latch in the data.
Note: The eye diagram shown is the output of the FPGA at 210 MSPS, not that of the ADC. For
the ADC output timing, see the respective device data sheet.
SLWU028B–January 2006–Revised November 2006
9
Submit Documentation Feedback
Circuit Description
Table 3. Output Connector J4
J4 PIN
1
ADS5525/27 DESCRIPTION
CLK
ADS5545/46/47 DESCRIPTION
CLK
2
GND
GND
3
NC
NC
4
GND
GND
5
Reserved
GND
Reserved
GND
6
7
Reserved
GND
Reserved
GND
8
9
NC
Data bit 0 (LSB)
GND
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
GND
NC
Data bit 1
GND
GND
Data bit 0 (LSB)
GND
Data bit 2
GND
Data bit 1
GND
Data bit 3
GND
Data bit 2
GND
Data bit 4
GND
Data bit 3
GND
Data bit 5
GND
Data bit 4
GND
Data bit 6
GND
Data bit 5
GND
Data bit 7
GND
Data bit 6
GND
Data bit 8
GND
Data bit 7
GND
Data bit 9
GND
Data bit 8
GND
Data bit 10
GND
Data bit 9
GND
Data bit 11
GND
Data bit 10
GND
Data bit 12
GND
Data bit 11 (MSB)
GND
Data bit 13 (MSB)
GND
NC
NC
GND
GND
NC
NC
GND
GND
10
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Circuit Description
Table 4. Test Points
TP
DESCRIPTION
TP1
ADC common mode, input or output
depending on the setting of SW1, switch 4
TP3
TP4
TP5
TP6
TP7
TP8
TP9
THS4509 power down
ADC output enable
AGND
AGND
AGND
DGND
FPGA M0 pin; determines which FPGA logic
file to load
TP10
TP11
TP12
TP13
ADC SCLK
TPS75003 1.2 enable
TPS75003 2.5 enable
TPS75003 3.3 enable
3.2.7
LED Operation
To give greater visibility into the EVM operations, two LEDs are provided, D3 and D4. On power up, D4 is
asserted when a successful FPGA boot up is complete. For correct EVM operation, the LED should be
asserted at all times. LED D3 is asserted when the ADC and FPGA are operating and decoding in DDR
LVDS mode, and is not asserted when the ADC is functioning in CMOS mode. Furthermore, in either DDR
LVDS mode or CMOS mode, LED D3 blinks when an ADC overrange condition occurs.
CAUTION
If LED D3 is blinking, the amplitude coming into the ADC input (J3 or J4) must
be attenuated immediately; otherwise, damage to the ADC could occur.
12
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Expansion Options
4
Expansion Options
The EVM offers several exciting possibilities to expand the capabilities of the EVM. This allows the utmost
flexibility when prototyping an ADC circuit under conditions that mimic the end system, without the need to
develop a custom prototype board.
4.1 Custom FPGA Code
Using a standard JTAG interface on JP1, users have the ability to load custom logic onto the FPGA,
rapidly speeding up digital development time. This allows the flexibility of prototyping and debugging an
ADC digital interface design before developing application-specific hardware.
To take advantage of the onboard FPGA, users can download the free Xilinx WebPACK™ from the Xilinx
Web site. Select the XC3S250E-4FT256 as the FPGA and the XCF16PFSG48 as the PROM.
Note: See the Xilinx Spartan-3E Web site for complete documentation of the FPGA at:
Schematically, the FPGA is configured in BPI mode, and it samples FPGA pins M2, M1, and M0 when the
FPGA's INIT_B is brought low. Depending of the status of M0, it boots from either the top or the bottom of
the PROM contents. The PROM allows for the storage of two FPGA bit files. In its default condition, the
EVM stores one file for ADC CMOS output at the beginning of the PROM address space and one file for
ADC LVDS output at the end of the PROM address space.
Note: When creating custom FPGA code, store any custom-developed bit files for ADC CMOS
operation in the PROM revision 0 space, and store any custom-developed FPGA code for
ADC LVDS operation in the PROM revision 1 space.
4.2 Expansion Slot
For those users who make use of a custom FPGA program on the EVM, J5 and J6 provide an
expansion-slot capability. Users can design daughtercards or breakout boards to make use of the unused
FPGA I/O pins which are brought out to the headers.
Note: The EVM provides 5 V from J14 to pin 1 of both J5 and J6. This can be used to provide
power to any designed daughtercards.
4.3 Optional USB SPI Interface
In most cases, users can use the ADC parallel interface mode to change the operational modes of the
ADC. For users requiring SPI control of the ADC, TI has developed an optional USB daughter card that
plugs into the expansion slot. With the USB daughter card, users can use a PC interface to communicate
to the ADC three-wire SPI interface, which allows for complete control of the ADC register map. Contact
the factory for this optional accessory.
SLWU028B–January 2006–Revised November 2006
13
Submit Documentation Feedback
Physical Description
5
Physical Description
This chapter describes the physical characteristics and PCB layout of the EVM.
5.1 PCB Layout
The EVM is constructed on a 6-layer, 0.062-inch thick PCB using FR-4 material. The individual layers are
shown in Figure 4 through Figure 9. The layout features split analog and digital ground planes; however,
similar performance can be had with careful layout using a single ground plane. Users can connect the
analog and digital ground planes underneath the EVM by soldering the two exposed tinned strips together.
K001
Figure 4. Top Layer
14
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Physical Description
K002
Figure 5. Layer 2, Ground Plane
SLWU028B–January 2006–Revised November 2006
15
Submit Documentation Feedback
Physical Description
K003
Figure 6. Layer 3, Power Plane #1
16
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Physical Description
K004
Figure 7. Layer 4, Power Plane #2
SLWU028B–January 2006–Revised November 2006
17
Submit Documentation Feedback
Physical Description
K005
Figure 8. Layer 5, Ground Plane
18
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Physical Description
K006
Figure 9. Layer 6, Bottom Layer
SLWU028B–January 2006–Revised November 2006
19
Submit Documentation Feedback
Physical Description
5.2 Bill of Materials
20
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials
NOT
INSTALLED
VALUE
FOOTPRINT
QTY
PART NUMBER
VENDOR
DIGI-KEY NUMBER
REF DESIGNATOR
CAPACITORS
47-µF, tantalum, 20%, 10-V
7343
3528
4
5
ECS-T1AD476R
ECS-T1AX106R
Panasonic
Panasonic
PCS2476CT-ND
PCS2106CT-ND
C65, C66, C68, C69
10-µF, 10-V, 20%
C70, C71, C72, C73,
C74
10-µF, 10-V, 20%
100-µF, 6.3-V, 10%
0.1-µF, 16-V, 10%
2.2-µF, 6.3-V, 10%
10-µF, 6.3-V, 10%
0.01-µF, 16-V, 10%
0.1-µF, 16-V, 10%
3216
6032
805
805
805
603
603
2
2
ECS-T1AY106R
TPSC107K006R0150
ECJ-2VB1C104K
Panasonic
AVX
P11309CT-ND
478-1764-2-ND
PCC1812CT-ND
PCC2310CT-ND
490-1717-1-ND
PCC1750CT-ND
PCC1762CT-ND
C8, C9
C35, C60
C115, C116
C117
2
Panasonic
Panasonic
Murata
1
ECJ-GVB0J225K
4
GRM21BR60J106KE19L
ECJ-1VB1C103K
C13, C30, C40, C41
C57
1
Panasonic
Panasonic
18
ECJ-1VB1C104K
C14, C15, C18, C25,
C26, C27, C28, C32,
C33, C34, C36, C37,
C38, C39, C51, C55,
C62, C113
C52
1.5-nF, 50-V, 10%
10-pF, 50-V, ±0.5-pF
1-µF, 6.3-V, 10%
603
603
603
603
603
603
603
603
402
3
1
C1608X7R1H152K
ECJ-1VC1H100D
TDX
C31, C58, C59
Panasonic
Panasonic
Panasonic
AVX
PCC100CVCT-ND
PCC1915CT-ND
PCC2395CT-ND
478-1824-1-ND
PCC2273CT-ND
490-1409-1-ND
490-3555-1-ND
PCC1731CT-ND
C53
1
ECJ-1VB0J105K
C64
10-µF, 6.3-V, 20%
100-µF, 4-V, 20%
2.2-µF, 6.3-V, 10%
18-pF, 50-V, 5%
1
ECJ-1VB0J106M
C63
1
NOJC107M004RWJ
ECJ-1VB0J225K
C61
13
1
Panasonic
Murata
C85–C96, C114
C119
GRM1885C1H180JA01D
GQM1885C2A2R0CB01D
ECJ-0EF1C104Z
C2, C118
C20
2-pF, 100-V, ±0.25-pF
0.1-µF, 16-V, +80/–20%
0
Murata
14
Panasonic
C1, C3, C4, C5, C6,
C7, C10, C11, C12,
C16, C17, C19, C29,
C44, C49
0.22-µF, 6.3-V , ±10%
402
201
17
16
ECJ-0EB0J224K
Panasonic
AVX
PCC2269CT-ND
478-1054-1-ND
C42, C43, C46, C48,
C50, C54, C67, C75,
C76, C77, C78, C79,
C80, C81, C82, C83,
C84
0.022-µF, 6.3-V, +80/–20%
02016G223ZAT2A
C97, C98, C99, C100,
C101, C102, C103,
C104, C105, C106,
C107, C108, C109,
C110, C111, C112
SLWU028B–January 2006–Revised November 2006
21
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials (continued)
NOT
INSTALLED
VALUE
FOOTPRINT
QTY
PART NUMBER
VENDOR
DIGI-KEY NUMBER
REF DESIGNATOR
RESISTORS
0-Ω, 1/10-W, 5%
603
7
ERJ-3GEY0R00V
Panasonic
P0.0GCT-ND
R5, R6, R10, R18,
R48, R58, R82
R54, R56
0-Ω, 1/10-W, 5%
402
603
603
603
603
603
603
603
603
603
603
603
3
2
ERJ-GE0R00X
9C06031A4R02FGHFT
ERJ-3EKF20R0V
ERJ-3EKF24R9V
ERD-S1TJ4R7V
RC0603FR-0736RL
ERJ-3EKF49R9V
ERA-3YEB100V
ERJ-3EKF2000V
ERA-V33J331V
Panasonic
Yageo
P0.0JCT-ND
311-4.02HCT-ND
P20.0HCT-ND
P24.9HCT-ND
P4.7BBCT-ND
311-36.0HRCT-ND
P49.9HCT-ND
P100YCT-ND
R11, C45, C47
R37, R38
R79
4.02-Ω, 1/10-W 1%
20-Ω, 1/16-W, 1%
24.9-Ω, 1/16-W, 1%
4.7-Ω, 1/2-W, 5%
36-Ω, 1/10-W, 1%
49.9-Ω, 1/16-W, 1%
100-Ω, 1/16-W, 0.1%
200-Ω, 1/16-W, 1%
330-Ω, 1/16-W, 5%
499-Ω, 1/16-W, 1%
10-kΩ, 1/16-W, 1%
1
Panasonic
Panasonic
Panasonic
Yaego
1
R17
2
R44, R47
0
R12, R13
R34, R59
2
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
R35, R36
3
R31, R41, R60
R15, R16
2
P200HCT-ND
R85, R86
3
P330CHCT-ND
P499HCT-ND
R45, R87, R88
R83, R84
2
ERJ-3EKF4990V
ERJ-3EKF1002V
11
P10.0KHCT-ND
R2, R3, R4, R7, R8,
R9, R26, R32, R33,
R39, R40
4.75-kΩ, 1/16-W, 1%
15.4-kΩ, 1/16-W, 1%
20-kΩ, 1/16-W, 1%
36.5-kΩ, 1/16-W, 1%
56.2-kΩ, 1/16-W, 1%
4.99-kΩ, 1/16-W, 1%
61.9-kΩ, 1/16-W, 1%
0.033-Ω, 1/4-W, 5%
348-Ω, 1/16-W, 1%
49.9-Ω, 1/16-W, 1%
78.7-Ω, 1/16-W, 1%
100-Ω, 1/16-W, 1%
20-Ω R-pack, 5%, 0.063-W
10-kΩ resistor pack
603
2
1
3
1
1
3
2
2
2
3
2
2
2
1
ERJ-3EKF4751V
ERJ-3EKF1542V
ERJ-3EKF2002V
ERJ-3EKF3652V
ERJ-3EKF5622V
ERJ-3EKF4991V
ERJ-3EKF6192V
RL1220T-R033-J
ERJ-2RKF3480X
ERJ-2RKF49R9X
ERJ-2RKF78R7X
ERJ-2RKF1000X
742C163220JTR
742C163103JTR
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Susumu Co,. Ltd.
Panasonic
Panasonic
Panasonic
Panasonic
CTS
P4.75KHCT-ND
P15.4KHCT-ND
P20.0KHCT-ND
P36.5KHCT-ND
P56.2KHCT-ND
P4.99KHCT-ND
P61.9KHCT-ND
RL12T.033JCT-ND
P348LCT-ND
R46, R49
R65
603
603
R30, R80, R81
R66
603
603
R1
603
R27, R28, R29
R63, R64
R61, R62
R24, R25
R19, R42, R43
R20, R21
R22, R23
RP1, RP2
RP3
603
805
402
402
P49.9LCT-ND
402
P78.7LCT-ND
402
P100LCT-ND
CTS-742_8RES
CTS_742_8RES
742C163220JCT-ND
742C163103JCT-ND
CTS
22
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials (continued)
NOT
INSTALLED
VALUE
FOOTPRINT
QTY
PART NUMBER
VENDOR
DIGI-KEY NUMBER
REF DESIGNATOR
FERRITE BEADS, CONNECTORS, JUMPERS, JACKS, ICs, ETC.
Ferrite bead
1206
5
EXC-ML32A680U
Panasonic
P10437CT-ND
FB2, FB3, FB4, FB6,
FB7
FB8, FB9,
FB10
Inductor, SMT, 15-µH, 2.6-A
Inductor, SMT, 5-µH, 2.9-A
0.0-Ω, 1/8-W, 5% resistor
Red test point
COIL-CDRH8D43
COIL-CDRH6D38
805
1
1
2
8
CDRH8D43-150
CDRH6D38-5R0
ERJ-6GEY0R00V
5000k
Sumida
Sumida
L1
CDRH6D38-5R0NC-ND L2
Panasonic
Keystone
P0.0ACT-ND
5000K-ND
L3, L4
TP1, TP4, TP9, TP10 TP3 TP11
Test_point2
TP12 TP13
Black test point
40-pin header
Test_point2
4
1
2
5001k
Keystone
Samtec
Samtec
5000K-ND
TP5 TP6 TP7 TP8
20×2×.1
HTSW-120-07-L-D
MMS-120-02-T-DV
J4
40-pin header smt
20X2_SMT_MMS_
SAMTEC
J5, J6
Red banana jacks
BANANA_JACK
5
ST-351A
Allied
N/A
J11, J12, J13, J14,
J15
Black banana jacks
SMA connectors
3POS_header
BANANA_JACK
SMA_Jack
4
3
1
1
0
3
ST-351B
901-144-8RFX
HTSW-150-07-L-S
HTSW-120-07-L-D
93F7124
Allied
AMP
N/A
J9, J10, J16, J17
J1, J3, J7
JP2(1)
ARFX1231-ND
J8
3pos_jumper
6×1×.1
Samtec
Samtec
Newark
Mini-Circuits
6-pin header
JP1
3-pin power connector
Transformer
3term_screw_con
J20
TC4-1W_
TC4-1W
T1, T2, T3
TRANSFORMER
Diode, Schottky, 1-A, 20-V
Diode, Schottky, 3-A, 20-V
Green SM_LED_1206
DIODE-MBRM120
DO-214AB(SMC)
LED-1206
1
1
2
2
MBRM120E
SS32
ON Semiconductor
Vishay
D2
D1
CMD15-21VGC/TR8
SI2323DS
Panasonic
Vishay
L62205CT-ND
D3, D4
Q1, Q2
MOSFET, P-CH, 20-V, 4.7-A,
3-SOT-23
39-MΩ
TRANS BIAS NPN, 50-V
Switch
SOT416
EVQ-PJ
1
1
1
DTC114EET1
EVQ-PJX04M
TDA08H0SK1
ON Semiconductor
Panasonic
ITT
DTC114EET1OS-ND
P8050SCT-ND
Q3
S1
Switch, 8-Pos, half-pitch SMT
SWITCH_8POS_
SMT
CKN1365-ND
SW1
3-circuit jumpers
3-circuit jumpers
SJP3_RESISTOR
SJP3_402
2
2
ERJ-3GEY0R00V
ERJ-2GE0R00X
Panasonic
Panasonic
P0.0GCT-ND
P0.0JCT-ND
SJP4(2), SJP5(3)
SJP1(4), SJP2(5)
(1)
Add jumper for JP2 between pins 1 to 2.
(2)
(3)
(4)
(5)
Add jumper for SJP4 between pins 2 and 3 (use a 0-Ω resistor to short pins).
Add jumper for SJP5 between pins 2 and 3 (use a 0-Ω resistor to short pins).
Add jumper for SJP1 between pins 1 and 2 (use a 0-Ω resistor to short pins).
Add jumper for SJP2 between pins 1 and 2 (use a 0-Ω resistor to short pins).
SLWU028B–January 2006–Revised November 2006
23
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials (continued)
NOT
INSTALLED
VALUE
FOOTPRINT
QTY
PART NUMBER
VENDOR
DIGI-KEY NUMBER
REF DESIGNATOR
U1
ADS5525/27, ADS5545/46/47
48-QFN_MOD
1
ADS5525/27,
TI
ADS5545/46/47
Spartan-3E XC3S250E
256-BGA-
XC3S250E-4FT256CES
Xilinx
U2
1mm_XILINX
IC amp, fully-diff, wideband
XCF16PFSG48
16-QFN(RGT)
48PIN_BGA_XILINX
20-pin-QFN
1
1
1
1
1
1
1
4
4
THS4509RGTT
XCF16PFSG48
TPS75003RHLR
TPS73018DBVT
TLV3502AIDCNT
SN74LVC1G86DBVR
N/A
TI
296-17730-1-ND
U3
U4
U6
U7
U9
U10
Xilinx
IC, pwr-mgmt, triple-supply
IC, LDO reg, hi-PSRR, 1.8-V
IC, comparator, R-R, hi-spd
IC, EX-OR gate, 2-in
2-pos shunt
TI
296-17835-2-ND
296-17577-1-ND
296-18147-2-ND
296-9853-1-ND
929955-06-ND
H781-ND
5-SOT(DBV)
TI
8-TSSOP(DCN)
5-SOT(DBV)
TI
TI
3M
Shorting jumper
4-40 × 3/8"
Screw
N/A
Building Fasteners
Keystone
Standoff, hex (1/4 x .5")
4-40 screw
N/A
1902CK-ND
24
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
Physical Description
5.3 PCB Schematics
The schematics for the EVM are on the following pages.
SLWU028B–January 2006–Revised November 2006
25
Submit Documentation Feedback
U2A
XILINX XC3S500E_FT256
2.5V
VCCO_0
B5
B12
F7
A14
B14
A13
B13
E11
D11
B11
C11
E10
D10
F8
IO_L01N_0
IO_L01P_0
IO_L03N_0/VREF_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
F10
2
IO_L03P_0
JP2
IO_L04N_0
(1-2)
IO_L04P_0
IO_L05N_0/VREF_0
IO_L05P_0
IO_L06N_0
IO_L06P_0
IO_L12N_0
IO_L12P_0
IO_L08N_0/GCLK5
IO_L08P_0/GCLK4
3.3V
DRVDD
D
C
B
A
D
C
B
A
C3
.1uF
C1
C8
+
.1uF
E8
F9
E9
10uF
CLKOUTM
CLKOUTP
D12_D13P
D12_D13M
A9
A10
IO_L09N_0/GCLK7
IO_L09P_0/GCLK6
D10_D11P
D10_D11M
D8_D9P
D8_D9M
D6_D7P
D6_D7M
D4_D5P
D4_D5M
B8
A8
D8
C8
D7
E7
D6
C6
E6
D5
A4
IP_L10N_0/GCLK9
IP_L10P_0/GCLK8
IO_L11N_0/GCLK11
IO_L11P_0/GCLK10
IO_L14N_0/VREF_0
IO_L14P_0
IO_L15N_0
IO_L15P_0
IP_L16N_0
IP_L16P_0
IO_L17N_0/VREF_0
IO_L17P_0
IO_L18N_0
IO_L18P_0
IO_L19N_0/HSWAP
IO_L19P_0
IP
IP
AVDD
C7
B7
NC
NC
C9
C4
C5
C6
.1uF
C7
.1uF
C10
.1uF
C19
.1uF
+
10uF
.1uF
.1uF
A5
D2_D3P
D2_D3M
C4
C5
B3
C3
A3
C13
C12
D12
C9
C10
U1-H6
U1-H5
(Sh 4) U1-H6
3.3V
(Sh 4) U1-H5
A1
B9
F6
G7
G8
G9
H8
R3
R27
R30
IP_L02N_0
IP_L02P_0
IP_L07N_0
IP_L07P_0
GND
GND
GND
GND
GND
GND
GND
10K
4.99K
20K
DFS
A7
A12
B4
B6
B10
(Sh 4)
DFS
IO
IO
IO
IP
IP
1
2
3
4
5
6
7
8
9
36
35
34
33
32
31
30
29
28
27
26
25
DRGND
DRVDD
OVR
CLKOUTM
CLKOUTP
DFS
OE
AVDD
AGND
CLKP
DRGND
DRVDD
D0_D1P
D0_D1M
N/C
N/C
RESET
SCLK
SDATA
SEN
AVDD
AGND
TP10
OVR
D0_D1P
D0_D1M
(Sh 4)
(Sh 4)
OVR
OE
CLKOUTM
CLKOUTP
D9
IO_VREF_0
R10
0
OE
R41
100 RESET
SCLK
U1-G2
RESET (Sh 4)
SCLK (Sh 4)
SDATA (Sh 4)
U1-G2 (Sh 4)
U1
R48
R6
0
R18
0
SDATA
3.3V
R81
U1-G3
TP4
ADS5545_48PIN-QFN
U1-G3 (Sh 4)
CLKP
CLKM
10
11
12
0
(Sh 4) CLKP
(Sh 4) CLKM
CLKPM
AGND
R29
R7
S1
DRVDD
20K
4.99K
10K
SW-PB
SEN
SEN
(Sh 4)
R2
10K
U1-H4
U1-H3
U1-H4 (Sh 4)
3.3V
U1-H3 (Sh 4)
DRVDD
R80
20K
R28
R4
10K
TP1
R5
0
VCM
CM
4.99K
R32
(Sh 2) VCM
DFS
3.3V
MODE
(Sh 2) CM
MODE (Sh 4)
10K
3.3V
C14
.1uF
IREF
C115
.1uF
C117
2.2uF
C116
.1uF
U9
TLV3502
R1
56.2K
R33
10K
1
2
3
4
8
7
6
5
+IN A
V+
OUT A
OUT B
V-
TP9
U10
1
2
-IN A
+IN B
-IN B
4
M0
M0
(Sh 4)
INP
R39
10K
(Sh 2) INP
SN74LVC1G86
INM
(Sh 2) INM
R40
10K
12500 TI Boulevard. Dallas, Texas 75243
Title:
ADS5545
Engineer:
J. VENABLE
Drawn By: Y. DEWONCK
Note 1. Part not installed
SIZE:
DATE:
REV:
11-Jul-2006
B
FILE:
SHEET:
OF:
1
7
1
2
3
4
5
6
+VCC
AMPLIFIER PATH:
AC Couple (default)
C11
.1uF
C12
.1uF
C13
10uF
C40
10uF
C45 C47 = 0.1uF
R26 R27 = 200 Ohms
R5 = 0 Ohms
R24
VCC= 5 V, VEE = GND
348
D
C
B
A
D
C
B
A
TP3
DC Couple
J1
C45 C47 = 0 Ohms
SMA_END
C44
.1uF
R22
100
R26 R27 = Unpopulated
R5 = Unpopulated
1
AMP_P
VCC= 4 V, VEE = -1V
1
2
C45
N/C
Vin-
R44
4.7
L3
R42
49.9
49.9
3
Vout+
Vout-
R85
200
0 ohm
R20
69.8
R83
499
U3
C2
0 ohm
C47
THS4509
20pF
C118
20pF
C119
11
4
CM
Vin+
CM
L4
R43
10
20pF
VCM
0 ohm
(Sh 1) VCM
0 ohm
R86
200
R47
4.7
C16
.1uF
C49
.1uF
R84
499
AMP_M
R21
69.8
R23
100
R25
348
-VCC
R19
49.9
C17
.1uF
C29
C30
10uF
C41
.1uF
10uF
C46
.22uF
Note : R12, C20, and R13 are to be un-populated
on ADS5525/45/46 EVMs.
AMP_M
R12, C20, and R13 may be populated for
future ADC boards; contact factory for details.
R17
24.9
CM
CM
SJP4
R37
4.02
2
INM
(Sh 1)
INM
(2-3)
J3
AIN
R12
36
C15
1
4
6
T1
3
2
1
1
2
3
T2
6
4
.1uF
C113
.1uF
C52
.1uF
R34
49.9
(Note 1)
R15
200
R16
200
R35
49.9
R36
49.9
C20
2pF
(Note 1)
TC4-1W
TC4-1W
AMP_P
R13
36
C55
.1uF
C62
.1uF
C51
.1uF
SJP5
R38
4.02
2
INP
INP (Sh 1)
(2-3)
12500 TI Boulevard. Dallas, Texas 75243
Title:
ADS5545
Engineer:
J. VENABLE
DOCUMENTCONTROL #
REV:
OF:
B
Drawn By: Y. DEWONCK
FILE:
Note 1. Part not installed
1
2
3
4
5
6
SIZE:
DATE:
17-Jul-2006
SHEET:
2
7
1
2
3
4
5
6
D
C
B
A
D
C
B
A
R54
0
1
2
(Note 1)
J7
CLK_INP
C25
.1uF
1
6
4
T3
1
2
3
R59
49.9
R60
100
R31
100
SJP2
(Note 1)
TC4-1W
J8
2
CLKP
CLKP (Sh 1)
CLK_INM
(1-2)
R56
0
C26
.1uF
1
(Note 1)
(Note 1)
R58
0
2
CLKM
SJP1
CLKM (Sh 1)
(1-2)
12500 TI Boulevard. Dallas, Texas 75243
Title:
ADS5545
Engineer:
Drawn By:
FILE:
J. VENABLE
DOCUMENTCONTROL #
REV:
OF:
B
Note 1. Part not installed
Y. DEWONCK
DATE:
SIZE:
6
11-Jul-2006
SHEET:
3
7
1
2
3
4
5
1
2
3
4
5
6
5V
U2B
5V
J6
40PIN_IDC
XILINX XC3S500E_FT256
3.3V
J5
J4
R79
20
CLKOUT
RP1
20 Ohm
R15
R16
P15
P16
M16
N16
L15
L14
J16
K16
H14
H15
G16
G15
F15
F14
D14
D15
C15
C16
K12
K13
K14
K15
J13
E15
G11
K11
2
4
6
8
1
3
5
7
9
2
4
6
8
1
3
5
7
9
IO_L01N_1/A15
IO_L01P_1/A16
IO_L02N_1/A13
IO_L02P_1/A14
IO_L04N_1/VREF_1
IO_L04P_1
IO_L06N_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
2
4
6
8
1
3
5
7
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
16
15
14
13
12
11
10
9
ADC_D0
ADC_D1
ADC_D2
ADC_D3
ADC_D4
ADC_D5
ADC_D6
ADC_D7
ADC_D8
ADC_D9
ADC_D10
ADC_D11
ADC_D12
ADC_D13
ADC_D14
ADC_D15
M15
U2D
XILINX XC3S500E_FT256
10
10
10
3.3V
12 11
14 13
16 15
18 17
20 19
22 21
24 23
26 25
28 27
30 29
32 31
34 33
36 35
38 37
40 39
12 11
14 13
16 15
18 17
20 19
22 21
24 23
26 25
28 27
30 29
32 31
34 33
36 35
38 37
40 39
12 11
14 13
16 15
18 17
20 19
22 21
24 23
26 25
28 27
30 29
32 31
34 33
36 35
38 37
40 39
ADC_D6 R1
ADC_D5 R2
ADC_D4 P1
ADC_D3 P2
ADC_D2 N1
ADC_D1 M1
E2
G6
K6
M2
IO_L06P_1
IO_L19N_3
IO_L19P_3
IO_L18N_3
IO_L18P_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
D
C
B
A
D
C
B
A
IO_L09N_1/A9/RHCLK1
IO_L09P_1/A10/RHCLK0
IO_L11N_1/A5/RHCLK5
IO_L11P_1/A6/RHCLK4/IRDY1
IO_L13N_1/A1
IO_L13P_1/A2
IO_L15N_1
SW16
SW15
SW14
SW13
SW12
SW9
IO/HDC
SW10
SW11
IO_L16N_3
IO_L16P_3
IO_L15N_3
IO_L15P_3
IO_L12N_3
IO_L12P_3
IO_L05N_3
IO_L05P_3
IO_L03N_3
IO_L03P_3
IO_L02N_3/VREF_3
IO_L02P_3
IO_L01N_3
IO_L01P_3
IO_L06N_3
IO_L06P_3
IO_L07N_3
L5
K5
ADC_D0 K1
IO_L15P_1
J1
E1
D1
E4
E3
C2
C1
B2
B1
G4
G5
G2
G3
H6
H5
H4
H3
IO_L18N_1/LDC0
IO_L18P_1/HDC
IO_L19N_1/LDC2
IO_L19P_1/LDC1
IO_L07N_1/A11
IO_L07P_1/A12
IO_L08N_1/VREF_1
IO_L08P_1
(Sh 5)
IO/HDC
RP2
20 Ohm
N15
N14
L13
L12
E16
E13
40PIN_IDC
40PIN SMT MMS
NC
NC
NC
IO_L10N_1/A7/RHCLK3/TRDY1 NC
J14
IO_L10P_1/A8/RHCLK2
IO_L12N_1/A3/RHCLK7
IO_L12P_1/A4/RHCLK6
IO_L14N_1/A0
IO_L14P_1
IO_L16N_1
NC
NC
CTRL_LE
CTRL_DATA
CTRL_CLK
H11
H12
G14
G13
F12
F13
MODE
U1-G2
U1-G3
U1-H6
U1-H5
U1-H4
U1-H3
CTRL_LE
CTRL_DATA
CTRL_CLK
(Sh 1) MODE
(Sh 1) U1-G2
(Sh 1) U1-G3
(Sh 1) U1-H6
(Sh 1) U1-H5
(Sh 1) U1-H4
(Sh 1) U1-H3
(Sh 1) RESET
F4
F3
L2
L3
L4
M4
NC
NC
NC
NC
NC
NC
IO_L07P_3
IO_L08N_3/LHCLK1
IO_L08P_3/LHCLK0
IO_L09N_3/LHCLK3/IRDY2
IO_L09P_3/LHCLK2
IO_L10N_3/LHCLK5
IO_L10P_3/LHCLK4/TRDY2
IO_L11N_3/LHCLK7
IO_L11P_3/LHCLK6
IO_L13P_3
OE
(Sh 1)
OE
IO_L16P_1
RESET
CLKOUT J2
J3
B16
E14
G12
H16
J11
IP
IP
IP
IP
IP
IP
IP
OVR
SCLK
J4
J5
(Sh 1)
OVR
(Sh 1) SCLK
A16
F11
G10
H9
H10
J9
GND
GND
GND
GND
GND
GND
GND
GND
3.3V
U2C
SDATA
SEN
K2
K3
(Sh 1) SDATA
XILINX XC3S500E_FT256
3.3V
L7
L10
R5
(Sh 1)
SEN
IO_L13N_3
J12
M13
M7
T12
T8
D3
LED_1206
IP
IP
IO/D5
IO/M1
VCCO_2
VCCO_2
VCCO_2
D2
F2
H1
J6
K4
M3
N3
IP
IP
IP
IP
IP
IP
IP
J10
J15
T10
R12
M14
D16
H13
VCCO_2
IO
DFS
(Sh 1)
DFS
IO/VREF_1
IP/VREF_1
P13
R4
H2
H7
J7
IO/VREF_2
IO/VREF_2
GND
GND
GND
GND
GND
GND
GND
R87
330
R9
T9
J8
IP_L11N_2/M2/GCLK1
IP_L11P_2/RDWR_B/GCLK0
IO/L03N_2/MOSI/CSI_B
IO/L03P_2/DOUT/BUSY
IO/L01N_2/INIT_B
IO/L01P_2/CSO_B
IP_L02N_2
F5
K7
L6
T1
IO
N5
P5
P4
P3
R3
T3
BUSY
G1
N2
(Sh 5)
(Sh 5)
BUSY
INIT_B
IP/VREF_3
IO/VREF_3
INIT_B
ADC_D7
IP_L02P_2
IO/L04N_2
IO/L04P_2
IO/L05N_2
IO/L05P_2
IO/L06N_2
IO/L06P_2
ADC_D8
ADC_D9
ADC_D10
ADC_D13
ADC_D12
ADC_D11
T5
T4
P7
N7
P10
R10
NC
NC
NC
NC
N6
M6
P6
R6
T7
RP3
10K Ohm
IP_L08N_2/VREF_2
R7
N9
P9
P11
R11
N12
P12
R13
T13
L8
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
IP_L08P_2
IO/L12N_2/D1/GCLK3
IO/L12P_2/D2/GCLK2
IO/L16N_2/A22
IO/L16P_2/A23
IO/L18N_2/A20
IO/L18P_2/A21
IO/L19N_2/VS1/A18
IO/L19P_2/VS2/A19
IO/L09N_2/D6/GCLK13
IO/L09P_2/D7/GCLK12
IO/L10N_2/D3/GCLK15
IO/L10P_2/D4/GCLK14
IO/L13N_2/DIN/D0
IO/L13P_2/M0
M8
P8
N8
M9
SW1
3.3V
M0
L9
16
1
2
3
4
5
6
7
8
SW16
SW15
SW14
SW13
SW12
SW11
SW10
SW9
(Sh 1)
M0
ADC_D14
ADC_D15
M10
N10
N11
M11
R14
P14
K8
K9
K10
L11
R8
IO/L15N_2
IO/L15P_2
IP_L17P_2
IP_L17N_2
GND
GND
GND
GND
GND
GND
15
14
13
12
11
10
9
CCLK
A23
D0
D1
D2
D3
D4
D5
D6
(Sh 5) CCLK
IO/L20N_2/CCLK
IO/L20P_2/VS0/A17
T16
(Sh 5)
A23
D0
D1
D2
D3
D4
D5
D6
D7
T2
T14
IP
IP
(Sh 5)
D7
SWITCH_8POS_SMT
12500 TI Boulevard. Dallas, Texas 75243
Title:
ADS5545
Engineer:
Note 1. Part not installed
J. VENABLE
Drawn By: Y. DEWONCK
DOCUMENTCONTROL #
REV:
OF:
B
FILE:
DATE:
SIZE:
6
11-Jul-2006
SHEET:
4
7
1
2
3
4
5
1
2
3
4
5
6
3.3V
R88
330
2.5V
D4
LED_1206
R49
4.75K
2.5V
1.8V
U4
D
D
C
B
A
XCF16PFSG48
Q3
B1
E1
G6
A3
INIT_B
R46
4.75K
R45
330
DTC114EET1
VCCINT
VCCINT
VCCINT
OE/RESET__
INIT_B (Sh 4)
U2E
B3
B4
C1
CCLK
BUSY
XILINX XC3S500E_FT256
1.2V
CLK
CE__
BUSY
CCLK (Sh 4)
DONE
T15
D3
D4
BUSY (Sh 4)
DONE
PROG_B
TCK
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
D13
E5
3.3V
C2
PROG_B
CLKOUT
E12
M5
H6
H5
E5
D5
C5
B5
A5
A6
D0
D1
D2
D3
D4
D5
D6
D7
A15
A2
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
B2
C6
D6
G5
M12
VCCO
VCCO
VCCO
VCCO
N4
TDI
N13
(Sh 4)
C14
B15
TDO
2.5V
TMS
H2
A6
A11
F1
F16
L1
L16
T6
T11
VCCJ
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
D1
D2
IO/HDC
CF__
IO/HDC (Sh 4)
A4
C3
C4
D3
D4
E3
E4
F2
F3
F4
G2
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
CEO__
E2
E6
G1
G3
G4
H3
H4
TMS
TDO
C
TDI
A23
REV_SEL0
REV_SEL1
TCK
A23
(Sh 4)
A1
A2
B6
F1
F5
F6
H1
GND
GND
GND
GND
GND
GND
GND
(Sh 3)
EN_EXT_SEL__
R11
0
3.3V
JP1
6X1X.1
B
A
12500 TI Boulevard. Dallas, Texas 75243
Title:
ADS5545
Engineer:
Note 1. Part not installed
J. VENABLE
DOCUMENTCONTROL #
REV:
OF:
B
Drawn By: Y. DEWONCK
FILE:
DATE:
SIZE:
6
11-Jul-2006
SHEET:
5
7
1
2
3
4
5
1
2
3
4
5
6
L1
1.2V
+
1
2
1
2
G
S
3
VCCO_0
BANK 0 DECOUPLING
CDRH8D43-150
15uH
D
C60
D1
C85
2.2uF
C42
C48
C97
C99
100uF
Q1
FET-SI2323DS
C57
.01uF
C58
C31
.22uF
.22uF
.022uF
.022uF
SS32
R61
.033
D
C
B
A
D
C
B
A
1.5nF 1.5nF
5V
TP11
5V
R8
C27
.1uF
10K
5V
IS1
3.3V
BANK 1 DECOUPLING
C64
1uF
C61
100uF
C86
C43
C50
C98
C100
2.2uF
.22uF
.22uF
.022uF
.022uF
20
1
11
IN3
FB1
J20
U6
TPS75003
2.5V
R82
3
2
1
10
FB2
OUT3
FB2
0
1.2V
3.3V
C63
R63
3.3V
BANK 2 DECOUPLING
10uF
61.9K
C87
C54
C75
C101
C103
FB3
IS2
CON_3TERM_SCREW
5V
2.2uF
.22uF
.22uF
.022uF
.022uF
R65
C28
.1uF
15.4K
R62
C59
.033
TP12
1.5nF
5V
R9
3.3V
BANK 3 DECOUPLING
10K
R26
TP13
R66
C88
C67
C76
C102
C104
36.5K
10K
C53
Q2
R64
2.2uF
.22uF
.22uF
.022uF
.022uF
2
1
L2
61.9K
C35
10pF
S
3
3.3V
+
D
1
2
G
CDRH6D38-5R0
5uH
D2
FET-SI2323DS
100uF
MBRM120
1.2V
VCCINT DECOUPLING
C89
2.2uF
C90
C91
C92
C77
C78
C79
C80
C105
C106
C107
C108
2.2uF
2.2uF
2.2uF
.22uF
.22uF
.22uF
.22uF
.022uF
.022uF
.022uF
.022uF
5V
U7
TPS73018DBV
1.8V
2.5V
VCCAUX CORE DECOUPLING
1
3
5
IN
OUT
C18
.1uF
C114
2.2uF
C93
C94
C95
C96
C81
C82
C83
C84
C109
C110
C111
C112
4
2.2uF
2.2uF
2.2uF
2.2uF
.22uF
.22uF
.22uF
.22uF
.022uF
.022uF
.022uF
.022uF
EN
NR
12500 TI Boulevard. Dallas, Texas 75243
Title:
Note 1. Part not installed
ADS5545
Engineer:
J. VENABLE
Drawn By:
FILE:
SIZE:
DATE:
REV:
B
11-Jul-2006
Y. DEWONCK
SHEET:
6
OF:
7
1
2
3
4
5
6
1
2
3
4
5
6
Diff Amp Positive Supply (+5.0V)
+VCC
FB3
J13
C66
+
C71
+
C34
.1uF
D
C
B
A
RED
D
C
B
A
ADC Analog Supply (+3.3V)
AVDD
+3.3VA-PS
47uF
10uF
J10
J12
FB2
J11
BLACK
C65
+
C70
C33
.1uF
RED
C32
.1uF
+
Diff Amp Negative Supply (-5.0V)
-VCC
47uF
10uF
J9
FB4
BLACK
C68
C73
C37
.1uF
RED
+
+
47uF
10uF
ADC DIGITAL SUPPLY(3.3V)
DRVDD
TP5
TP6
TP7
FPGA POWER SUPPLY(5V)
5V
OUTPUT_BUFFER
FB7
FB6
J15
J16
J14
C38
.1uF
C69
+
C74
+
C39
.1uF
C72
C36
.1uF
RED
RED
+
TP8
47uF
10uF
10uF
J17
BLACK
BLACK
(Note 1)
FB8
(Note 1)
FB9
(Note 1)
FB10
12500 TI Boulevard. Dallas, Texas 75243
Title:
ADS5545
Engineer:
Drawn By:
FILE:
J. VENABLE
DOCUMENTCONTROL #
REV:
OF:
B
Y. DEWONCK
Note 1. Part not installed
DATE:
SIZE:
6
11-Jul-2006
SHEET:
7
7
1
2
3
4
5
Physical Description
EVALUATION BOARD/KIT IMPORTANT NOTICE
Texas Instruments (TI) provides the enclosed product(s) under the following conditions:
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a
finished end-product fit for general consumer use. Persons handling the product(s) must have
electronics training and observe good engineering practice standards. As such, the goods being
provided are not intended to be complete in terms of required design-, marketing-, and/or
manufacturing-related protective considerations, including product safety and environmental
measures typically found in end products that incorporate such semiconductor components or
circuit boards. This evaluation board/kit does not fall within the scope of the European Union
directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling
(WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these
directives or other related directives.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the
board/kit may be returned within 30 days from the date of delivery for a full refund. THE
FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER
AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY,
INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further,
the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the
open construction of the product, it is the user’s responsibility to take any and all appropriate
precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY
SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
TI currently deals with a variety of customers for products, and therefore our arrangement with the
user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein.
Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s
Guide prior to handling the product. This notice contains important safety information about
temperatures and voltages. For additional information on TI’s environmental and/or safety
No license is granted under any patent right or other intellectual property right of TI covering or
relating to any machine, process, or combination in which such TI products or services might be
or are used.
SLWU028B–January 2006–Revised November 2006
33
Submit Documentation Feedback
Physical Description
FCC Warning
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a
finished end-product fit for general consumer use. It generates, uses, and can radiate radio
frequency energy and has not been tested for compliance with the limits of computing devices
pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against
radio frequency interference. Operation of this equipment in other environments may cause
interference with radio communications, in which case the user at his own expense will be
required to take whatever measures may be required to correct this interference.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
EVM WARNINGS AND RESTRICTIONS
It is important to operate this EVM within the AVDD voltage range of –0.3 V to 3.8 V and the
DVDD voltage range of –0.3 V to 3.8 V.
Exceeding the specified input range may cause unexpected operation and/or irreversible damage
to the EVM. If there are questions concerning the input range, please contact a TI field
representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or
possible permanent damage to the EVM. Please consult the EVM User's Guide prior to
connecting any load to the EVM output. If there is uncertainty as to the load specification, please
contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than
25°C. The EVM is designed to operate properly with certain components above 50°C as long as
the input and output ranges are maintained. These components include but are not limited to
linear regulators, switching transistors, pass transistors, and current sense resistors. These types
of devices can be identified using the EVM schematic located in the EVM User's Guide. When
placing measurement probes near these devices during operation, please be aware that these
devices may be very warm to the touch.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
34
SLWU028B–January 2006–Revised November 2006
Submit Documentation Feedback
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Audio
Amplifiers
amplifier.ti.com
dsp.ti.com
Data Converters
DSP
Broadband
Digital Control
Military
Interface
interface.ti.com
logic.ti.com
Logic
Power Mgmt
Microcontrollers
Low Power Wireless
Optical Networking
Security
microcontroller.ti.com
Telephony
Video & Imaging
Wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
|
Tokina Security Camera DMP 1223 User Manual
Toshiba Flat Panel Television WX800U User Manual
Toshiba Laptop toshiba satellite User Manual
Toshiba Projector t90 User Manual
Tyan Computer Computer Hardware InterServe 90 User Manual
Uniden Automobile Alarm 100xr User Manual
Vantec Computer Drive NST 280SU3 BK User Manual
Vermont Casting Indoor Fireplace DVHVAC36 User Manual
ViewSonic Digital Photo Frame DP701W4 User Manual
ViewSonic Flat Panel Television VS12464 1G User Manual